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We show that spatial correlations in wave functions of quantum dots, obtained earlier by averaging over a
random potential via supermatrix techniques, can be computed with much less effort by making use of Berry’s
conjecture that the energy eigenfunctions in a quantized chaotic system are Gaussian random variables. Fur-
thermore, in the case of a time-reversal invariant system, we find a greatly simplified~though equivalent!
formula for these correlations.@S1063-651X~96!09505-0#

PACS number~s!: 05.45.1b, 73.20.Dx, 73.20.Fz

Prigodin @1# and Prigodinet al. @2# have computed the
joint probability distribution

P~v1 ,v2!5^d„v12Vuc~x!u2…d„v22Vuc~y!u2…& ~1!

for the squared amplitude of an energy eigenfunctionc(x) at
two different points (x andy) in a quantum dot with volume
V, assuming either broken@1# or unbroken@2# time-reversal
invariance. This was accomplished by averaging over a ran-
dom potential using supermatrix techniques. Here we show
that their results can be obtained much more easily by mak-
ing use of Berry’s conjecture@3# that the energy eigenfunc-
tions in a quantized chaotic system are Gaussian random
variables. Furthermore, in the time-reversal invariant case,
we get a formula forP(v1 ,v2) which is considerably simpler
than ~though mathematically equivalent to! the one given in
@2#.

We interpret Berry’s conjecture as implying that

P~c!}expF2
b

2E dxdyc* ~x!K~x,y!c~y!G , ~2!

whereP(c) is the probability that a particular energy eigen-
function ~with a definite energy eigenvalue! is equal to the
specified functionc(x). Hereb51 for a system which is
time-reversal invariant, andb52 for a system which is not.
In the former case,c(x) is a real function. In either case, the
kernel K(x,y) is the inverse of the two-point correlation
function ^c* (x)c(y)&5V21f (ux2yu), where the angular
brackets now denote an average overP(c), rather than over
a random potential. We note that an assumption equivalent to
Eq. ~2! was made in@4# to calculate the probability distribu-
tion of level widths and conductance peaks in a quantum dot
with attached leads. We will not need the explicit formula for
f (r ) @3#, but notice that proper normalization of the wave
function requiresf (0)51.

To get P(v1 ,v2) from Eq. ~2!, we note that integrating
out all variables exceptc15c(x) andc25c(y) will yield a
Gaussian in these variables, and this Gaussian must repro-
duce the correct two-point correlation functions. Thus we
conclude that

P~c1 ,c2!}~detM !2b/2expF2
b

2
c i* ~M21! i jc j G , ~3!

where Mi j5^c i*c j&5V21@d i j1(12d i j ) f #, and f
5f~ux2yu!.

For the time-reversal invariant case,b52 andc i is com-
plex; changing integration variables tov i5Vuc i u2 and
u i5argc i , including a proper Jacobian, and integrating over
u1 andu2 yields

P~v1 ,v2!5
1

12 f 2
expS 2

v11v2
12 f 2 D I 0S 2 fAv1v212 f 2 D , ~4!

where I 0(z) is a modified Bessel function, and
f5 f (ux2yu). This is the same as Eq.~15! of @1#.
For the time-reversal invariant case,b51 andc i is real;

changing integration variables tov i5Vc i
2 and including a

proper Jacobian then yields

P~v1 ,v2!5
1

2p~12 f 2!1/2~v1v2!
1/2expS 2

v11v2
2~12 f 2! D

3coshS fAv1v212 f 2 D . ~5!

This should be compared with Eq.~5! of @2#, in which
P(v1 ,v2) is expressed as a parametric double integral. To
verify that these two very different expressions for
P(v1 ,v2) are equivalent, we compute the moments

Qnm5E
0

`

dv1dv2v1
nv2

mP~v1 ,v2!

5Vn1m^uc1u2nuc2u2m&. ~6!

Using standard combinatoric properties of Gaussian distribu-
tions, we have, in the time-reversal invariant case when
c(x) is real,

^c1•••c2p&5(
pairs

^c i1
c i2

&•••^c i2p21
c i2p

&, ~7!

where the sum is over the (2p21)!! ways of pairing up all
the c ’s. Recalling that ^c1c1&5^c2c2&51/V and
^c1c2&5 f /V, the last line of Eq.~6! is easily evaluated as a
special case of Eq.~7!. To find the contribution toQnm
which is proportional tof 2q, where q is an integer, we
choose 2q of the 2n c1’s in (2n)!/(2q)!(2n22q)! ways,
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2q of the 2m c2’s in (2m)!/(2q)!(2m22q)! ways, and
pair them up in (2q)! ways. Then we pair up the remaining
2n22q c1’s with each other in (2n22q21)!! ways, and
the remaining 2m22q c2’s with each other in
(2m22q21)!! ways. Putting all of this together, and using
the identity (2p21)!!5(2p)!/2pp!, we find

Qnm5 (
q50

min~n,m!
~2n!! ~2m!! f 2q

2n1m22q~n2q!! ~m2q!! ~2q!!
. ~8!

This is equivalent to Eq.~21! of @2# ~as corrected in the
erratum!.

For completeness, we note that we can also easily com-
puteQnm in the case of broken time-reversal invariance. The
analog of Eq.~7! is

^c1*c1•••cp*cp&5 (
perms

^c1*c i1
&•••^cp*c i p

&, ~9!

where the sum is over thep! permutations of the
c i ’s. We now have ^c1*c1&5^c2*c2&51/V and

^c1*c2&5^c2*c1&5 f /V. To find the contribution toQnm

which is proportional tof 2q, we chooseq of the n c1’s in
n!/q!(n2q)! ways, q of the m c2* ’s in m!/q!(m2q)!
ways, and pair them up inq! ways; we also chooseq of the
n c1* ’s in n!/q!(n2q)! ways, q of the m c2’s in
m!/q!(m2q)! ways, and pair them up inq! ways. Then we
pair the remainingn2q c1’s andn2q c1* ’s with each other
in (n2q)! ways, and the remainingm2q c2’s andm2q
c2* ’s with each other in (m2q)! ways. Putting all of this
together, we find

Qnm5 (
q50

min~n,m!
~n! !2~m! !2f 2q

~n2q!! ~m2q!! ~q! !2
. ~10!

This same formula follows from Eq.~14! of @1# ~after ex-
panding in powers off and doing the contour integral in that
equation term by term!.
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