Gaussian random eigenfunctions and spatial correlations in quantum dots

Mark Srednicki
Department of Physics, University of California, Santa Barbara, California 93106
(Received 6 February 1996)

Abstract

We show that spatial correlations in wave functions of quantum dots, obtained earlier by averaging over a random potential via supermatrix techniques, can be computed with much less effort by making use of Berry's conjecture that the energy eigenfunctions in a quantized chaotic system are Gaussian random variables. Furthermore, in the case of a time-reversal invariant system, we find a greatly simplified (though equivalent) formula for these correlations. [S1063-651X(96)09505-0]

PACS number(s): 05.45.+b, 73.20.Dx, 73.20.Fz

Prigodin [1] and Prigodin et al. [2] have computed the joint probability distribution

$$
\begin{equation*}
P\left(v_{1}, v_{2}\right)=\left\langle\delta\left(v_{1}-V|\psi(\mathbf{x})|^{2}\right) \delta\left(v_{2}-V|\psi(\mathbf{y})|^{2}\right)\right\rangle \tag{1}
\end{equation*}
$$

for the squared amplitude of an energy eigenfunction $\psi(\mathbf{x})$ at two different points (\mathbf{x} and \mathbf{y}) in a quantum dot with volume V, assuming either broken [1] or unbroken [2] time-reversal invariance. This was accomplished by averaging over a random potential using supermatrix techniques. Here we show that their results can be obtained much more easily by making use of Berry's conjecture [3] that the energy eigenfunctions in a quantized chaotic system are Gaussian random variables. Furthermore, in the time-reversal invariant case, we get a formula for $P\left(v_{1}, v_{2}\right)$ which is considerably simpler than (though mathematically equivalent to) the one given in [2].

We interpret Berry's conjecture as implying that

$$
\begin{equation*}
P(\psi) \propto \exp \left[-\frac{\beta}{2} \int d \mathbf{x} d \mathbf{y} \psi^{*}(\mathbf{x}) K(\mathbf{x}, \mathbf{y}) \psi(\mathbf{y})\right], \tag{2}
\end{equation*}
$$

where $P(\psi)$ is the probability that a particular energy eigenfunction (with a definite energy eigenvalue) is equal to the specified function $\psi(\mathbf{x})$. Here $\beta=1$ for a system which is time-reversal invariant, and $\beta=2$ for a system which is not. In the former case, $\psi(\mathbf{x})$ is a real function. In either case, the kernel $K(\mathbf{x}, \mathbf{y})$ is the inverse of the two-point correlation function $\left\langle\psi^{*}(\mathbf{x}) \psi(\mathbf{y})\right\rangle=V^{-1} f(|\mathbf{x}-\mathbf{y}|)$, where the angular brackets now denote an average over $P(\psi)$, rather than over a random potential. We note that an assumption equivalent to Eq. (2) was made in [4] to calculate the probability distribution of level widths and conductance peaks in a quantum dot with attached leads. We will not need the explicit formula for $f(r)$ [3], but notice that proper normalization of the wave function requires $f(0)=1$.

To get $P\left(v_{1}, v_{2}\right)$ from Eq. (2), we note that integrating out all variables except $\psi_{1}=\psi(\mathbf{x})$ and $\psi_{2}=\psi(\mathbf{y})$ will yield a Gaussian in these variables, and this Gaussian must reproduce the correct two-point correlation functions. Thus we conclude that

$$
\begin{equation*}
P\left(\psi_{1}, \psi_{2}\right) \propto(\operatorname{det} M)^{-\beta / 2} \exp \left[-\frac{\beta}{2} \psi_{i}^{*}\left(M^{-1}\right)_{i j} \psi_{j}\right], \tag{3}
\end{equation*}
$$

where $\quad M_{i j}=\left\langle\psi_{i}^{*} \psi_{j}\right\rangle=V^{-1}\left[\delta_{i j}+\left(1-\delta_{i j}\right) f\right]$, and f $=f(|\mathbf{x}-\mathbf{y}|)$.

For the time-reversal invariant case, $\beta=2$ and ψ_{i} is complex; changing integration variables to $v_{i}=V\left|\psi_{i}\right|^{2}$ and $\theta_{i}=\arg \psi_{i}$, including a proper Jacobian, and integrating over θ_{1} and θ_{2} yields

$$
\begin{equation*}
P\left(v_{1}, v_{2}\right)=\frac{1}{1-f^{2}} \exp \left(-\frac{v_{1}+v_{2}}{1-f^{2}}\right) I_{0}\left(\frac{2 f \sqrt{v_{1} v_{2}}}{1-f^{2}}\right), \tag{4}
\end{equation*}
$$

where $I_{0}(z)$ is a modified Bessel function, and $f=f(|\mathbf{x}-\mathbf{y}|)$. This is the same as Eq. (15) of [1].

For the time-reversal invariant case, $\beta=1$ and ψ_{i} is real; changing integration variables to $v_{i}=V \psi_{i}^{2}$ and including a proper Jacobian then yields

$$
\begin{align*}
P\left(v_{1}, v_{2}\right)= & \frac{1}{2 \pi\left(1-f^{2}\right)^{1 / 2}\left(v_{1} v_{2}\right)^{1 / 2}} \exp \left(-\frac{v_{1}+v_{2}}{2\left(1-f^{2}\right)}\right) \\
& \times \cosh \left(\frac{f \sqrt{v_{1} v_{2}}}{1-f^{2}}\right) . \tag{5}
\end{align*}
$$

This should be compared with Eq. (5) of [2], in which $P\left(v_{1}, v_{2}\right)$ is expressed as a parametric double integral. To verify that these two very different expressions for $P\left(v_{1}, v_{2}\right)$ are equivalent, we compute the moments

$$
\begin{align*}
Q_{n m} & =\int_{0}^{\infty} d v_{1} d v_{2} v_{1}^{n} v_{2}^{m} P\left(v_{1}, v_{2}\right) \\
& \left.=\left.V^{n+m}\langle | \psi_{1}\right|^{2 n}\left|\psi_{2}\right|^{2 m}\right\rangle \tag{6}
\end{align*}
$$

Using standard combinatoric properties of Gaussian distributions, we have, in the time-reversal invariant case when $\psi(\mathbf{x})$ is real,

$$
\begin{equation*}
\left\langle\psi_{1} \cdots \psi_{2 p}\right\rangle=\sum_{\text {pairs }}\left\langle\psi_{i_{1}} \psi_{i_{2}}\right\rangle \cdots\left\langle\psi_{i_{2 p-1}} \psi_{i_{2 p}}\right\rangle \tag{7}
\end{equation*}
$$

where the sum is over the $(2 p-1)$!! ways of pairing up all the ψ 's. Recalling that $\left\langle\psi_{1} \psi_{1}\right\rangle=\left\langle\psi_{2} \psi_{2}\right\rangle=1 / V \quad$ and $\left\langle\psi_{1} \psi_{2}\right\rangle=f / V$, the last line of Eq. (6) is easily evaluated as a special case of Eq. (7). To find the contribution to $Q_{n m}$ which is proportional to $f^{2 q}$, where q is an integer, we choose $2 q$ of the $2 n \psi_{1}$'s in $(2 n)!/(2 q)!(2 n-2 q)$! ways,
$2 q$ of the $2 m \psi_{2}$'s in $(2 m)!/(2 q)!(2 m-2 q)$! ways, and pair them up in $(2 q)$! ways. Then we pair up the remaining $2 n-2 q \psi_{1}$'s with each other in $(2 n-2 q-1)!$! ways, and the remaining $2 m-2 q \quad \psi_{2}$'s with each other in $(2 m-2 q-1)!!$ ways. Putting all of this together, and using the identity $(2 p-1)!!=(2 p)!/ 2^{p} p!$, we find

$$
\begin{equation*}
Q_{n m}=\sum_{q=0}^{\min (n, m)} \frac{(2 n)!(2 m)!f^{2 q}}{2^{n+m-2 q}(n-q)!(m-q)!(2 q)!} \tag{8}
\end{equation*}
$$

This is equivalent to Eq. (21) of [2] (as corrected in the erratum).

For completeness, we note that we can also easily compute $Q_{n m}$ in the case of broken time-reversal invariance. The analog of Eq. (7) is

$$
\begin{equation*}
\left\langle\psi_{1}^{*} \psi_{1} \cdots \psi_{p}^{*} \psi_{p}\right\rangle=\sum_{\text {perms }}\left\langle\psi_{1}^{*} \psi_{i_{1}}\right\rangle \cdots\left\langle\psi_{p}^{*} \psi_{i_{p}}\right\rangle, \tag{9}
\end{equation*}
$$

where the sum is over the p ! permutations of the ψ_{i}^{\prime} 's. We now have $\left\langle\psi_{1}^{*} \psi_{1}\right\rangle=\left\langle\psi_{2}^{*} \psi_{2}\right\rangle=1 / V \quad$ and
$\left\langle\psi_{1}^{*} \psi_{2}\right\rangle=\left\langle\psi_{2}^{*} \psi_{1}\right\rangle=f / V$. To find the contribution to $Q_{n m}$ which is proportional to $f^{2 q}$, we choose q of the $n \psi_{1}$'s in $n!/ q!(n-q)$! ways, q of the $m \psi_{2}^{*}$'s in $m!/ q!(m-q)$! ways, and pair them up in q ! ways; we also choose q of the $n \psi_{1}^{*}$'s in $n!/ q!(n-q)$! ways, q of the $m \psi_{2}$'s in $m!/ q!(m-q)!$ ways, and pair them up in q ! ways. Then we pair the remaining $n-q \psi_{1}$'s and $n-q \psi_{1}^{*}$'s with each other in $(n-q)$! ways, and the remaining $m-q \psi_{2}$'s and $m-q$ ψ_{2}^{*} 's with each other in $(m-q)$! ways. Putting all of this together, we find

$$
\begin{equation*}
Q_{n m}=\sum_{q=0}^{\min (n, m)} \frac{(n!)^{2}(m!)^{2} f^{2 q}}{(n-q)!(m-q)!(q!)^{2}} \tag{10}
\end{equation*}
$$

This same formula follows from Eq. (14) of [1] (after expanding in powers of f and doing the contour integral in that equation term by term).

I thank V. N. Prigodin and N. Taniguchi for helpful correspondence. This work was supported in part by NSF Grant No. PHY-91-16964.
[1] V. N. Prigodin, Phys. Rev. Lett. 74, 1566 (1995).
[2] V. N. Prigodin, N. Taniguchi, A. Kudrolli, V. Kidambi, and S. Sridhar, Phys. Rev. Lett. 75, 2392 (1995); (to be published).
[3] M. V. Berry, J. Phys. A 10, 2083 (1977).
[4] Y. Alhassid and C. H. Lewenkopf, Phys. Rev. Lett. 75, 3922 (1995).

